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Abstract. We study a one-dimensionaln-channel highly correlated electron model (based on
the supersymmetrict−J model) with a magnetic impurity of arbitrary spinS that can hybridize
with up to one itinerant electron per channel. The model extends the multichannel Kondo
problem to correlations in the host and to the mixed valence regime. The Bethe ansatz equations
are derived and solved for the ground state and for low temperatures. We conclude that the
critical non-Fermi-liquid (overscreened) behaviour cannot be reached for this interacting electron
system. Possible applications of the model are discussed.

The Mn–O bond length is believed to play a fundamental role in the colossal magneto-
resistance [1] recently discovered in La1−xCaxMnO3 films close to the metal–insulator and
para-/ferro-magnetic transitions. The Mn ions exist in a mixed tri-/tetra-valent state in which
the three t2g orbitals are simply occupied with their spins forming a total spinS = 3/2. In
Mn3+ there is, in addition, an electron populating one of the two eg orbitals with its spin
ferromagnetically correlated with the t2g spin quartet. The mixed valent character of the Mn
ions then arises from the eg electron, which may be localized at the Mn ion or become a
correlated itinerant electron via hybridization. The Mn–O bond lengths are changed when
the degeneracy of the two eg orbitals is lifted.

We consider here an integrable impurity model with some of the key ingredients of
the Mn ions in the manganates, namely, a localized spinS (representing the t2g states)
hybridizing with itinerant electrons to form the (Mn3+) configuration of total spinS + 1

2.
The model hasn orbitals to take into account the degeneracy of the eg levels. The one-
dimensional (1D) conduction states have infinite local repulsion within each channel (only
one spin state is occupied) and interactions with electrons on the neighbouring sites. Our
model can also be considered the extension of the multichannel Kondo problem [2–4] to
include correlations in the host and a hybridization of two magnetic impurity configurations
with the itinerant electrons.

We construct the Bethe ansatz equations for our model using the quantum inverse
scattering method [5] from the electron–electron scattering matrix of the host and the
electron–impurity scattering matrix by imposing periodic boundary conditions. (Note that
this approach is different from studying an open chain with the boundary potential playing
the role of the impurity [6].) Our problem is then similar to other magnetic impurities (e.g.
Kondo and Anderson) embedded into a free electron gas solved with the coordinate Bethe
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ansatz [4, 7], except that the starting point is the scattering matrices. The Hamiltonian can
be constructed as the logarithmic derivative of the transfer matrix.

An impurity introduced into an exactly solvable correlated host usually destroys the
integrability. There are only a few exceptions, namely, (i) the SU(2) Heisenberg chain of
spin S ′ with an impurity of spinS embedded into the chain [8] and (ii) some magnetic
impurities (Kondo and Anderson-like) in a single channel correlated electron host [9].
Whereas in case (i) all three forms of spin-compensation (under-/over-screening and exact
spin-compensation) can take place, the one-electron channel impurity models in case (ii)
only reveal underscreened and exact spin-compensated regimes, but no critical behaviour.
Our present model can also be considered as the extension of (ii) to include the situation
where the number of channels is larger than 2S.

The host is the multichannel extension of the 1D supersymmetrict−J model [10] with
the two-electron scattering matrix given by

X̂(p) = (pÎs + iP̂s)(pÎo − iP̂o)(p
2+ 1)−1 (1)

whereÎs , P̂s , Îo andP̂o are the identity and permutation operators for the spin and channels
(orbits), respectively. In (1) the spin and orbital parts factorize and each separately
satisfy the triangular Yang–Baxter relation, so thatX̂ also obeys the triangular relation.
Here p = 1

2 cot 1
2k are the charge rapidities andk is the wavenumber in the coordinate

representation. To preserve the integrability the electron–impurity scattering matrix,Ŝ has
to satisfy the triangular Yang–Baxter equation withX̂ [7]

X̂12(p1− p2)Ŝ
1M(p1− p0)Ŝ

2M ′(p2− p0) = Ŝ2M(p2− p0)Ŝ
1M ′(p1− p0)X̂

12(p1− p2)

(2)

where|M| 6 S is thez-projection of the impurity spinS. The Yang–Baxter equations are
the necessary and sufficient conditions for the integrability.

An impurity scattering matrix satisfying relation (2) is

Ŝσσ
′

MM ′(x) = Îo
[
δσσ ′δMM ′ + (Mσ |M + σ)× (M ′σ ′|M ′ + σ ′) i(2S + 1)

x − i(2S + 1)/2
Pσσ

′
MM ′

]
(3)

whereP σσ
′

MM ′ = δσσ ′δMM ′ + δ−σσ ′δM ′M+2σ . The impurity scattering is diagonal in the orbital
(channel) sector. The Clebsch–Gordan coefficient (Mσ |M + σ ), which is a shorthand
notation for (SM; 1

2σ |S 1
2(S + 1

2)M + σ ), selects the coupling of the impurity spin and the
spin of the itinerant electron to form an effective spin (S + 1

2) within each orbital channel.
Hence, the impurity exists in two different spin configurations, namely, one of spinS (only
the t2g orbitals are singly occupied) and the other of spin (S + 1

2) (there is an additional
electron in an eg orbital ferromagnetically coupled toS). The impurity scattering matrix
is similar to that of an Anderson impurity with two magnetic configurations embedded in
a free electron gas considered previously [11]. Since the hybridization matrix element of
the impurity is fixed by the condition of integrability, the only parameter determining the
properties of the impurity is thusp0 (except for the magnitude of the spinS). It will be seen
that |p0| plays the role of the Kondo exchange coupling constant. Note, however, thatŜ is
not unique, in the sense that there are other electron–impurity scattering matrices satisfying
(2) that can be constructed [9].

The (non-trivial) impurity-host part of the lattice Hamiltonian can be written as (suppose
the impurity is situated at site 0)

Himp = J (HL,0+H0,1+ {HL,0,H0,1} + (J−1− 3S(S + 1)− 1
4)HL,1

+2p0[(HL,0+H0,1,HL,1]) (4)
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where J = √2S + 1[p2
0 + (S + 1

2)
2]−1(Mσ |M + σ) is the effective coupling constant

(note that exchange is antiferromagnetic), an electron situated at site 0 has spinS, and the
interaction in the channel sector is just 1. One can see that by enlarging|p0| one reduces
the absolute value of the local exchange couplingJ , so that the most important resonance
situation corresponds to small values ofJ . The model is exactly diagonalized using the
standard Bethe ansatz approach [7]. Each eigenstate is characterized by (n + 2) sets of
quantum numbers, namely, one set of charge rapidities{pj }, j = 1, . . . , N (N is the total
number of electrons), one set of spin rapidities{λα}, α = 1, . . . ,M∗ (M∗ is the number of
down-spin electrons), andn sets of channel rapidities{µβ}, β = 1, . . . , m(i), i = 1, . . . , n
(with m(i) =∑n

k=i+1 n
(k) andn(k) being the number of electrons in channelk). Each state

corresponds to a particular solution of the nested Bethe ansatz∏
τ=±1

m(k+τ)∏
β=1

e1(µ
(k)
α − µ(k+τ)β ) =

m(k)∏
γ=1

e2(µ
(k)
α − µ(k)γ )

e2S(λα − p0)

N∏
j=1

e1(λα − pj ) =
M∗∏
β=1

e2(λα − λβ)

e2S+1(pj − p0)e
L
1 (pj ) =

M∗∏
α=1

e1(pj − λα)
m(1)∏
β=1

e1(µ
(1)
β − pj ) (5)

whereen(x) = (2x + in)/(2x − in), µ(0)j = pj , m(0) = N , m(n+1) = 0, andL is the length

of the chain. The energy and the magnetization are given byE = ∑N
j (p

2
j + 1

4)
−1, and

Sz = (N/2)−M∗ +S, respectively. The impurity contributions to equation (5) are the first
factors in the second and third equations.

There are several differences between the present model and the multichannel Kondo
problem in the free electron host worth pointing out. First, due to the correlations in the host
the charges contribute in a non-trivial way as can be seen in the second equation of (5).
Second, the present model involves forward and backward moving electrons in contrast
to the s-wave-only formulation of the multichannel Kondo impurity embedded in a free
electron gas [2, 3]. Third, the hybridization couples the impurity spin to itinerant electrons
on both neighbouring sites, breaking parity and time-reversal symmetries separately, but
conserving their product (TP).

It is instructive to discuss the long-wave limit of the model by linearizing the kinetic
energy about the Fermi level. The Fermi points±kF are related to Fermi charge rapidities
±pF by 2pF = cot 1

2kF and the Fermi velocity isvF = [2 sin( 1
2kF )]

−2. Dividing the
charge rapidities byvF and also rescaling the spin and channel rapidities, we obtain the
generalization of Wiegmann–Tsvelik’s Bethe ansatz [2] for the non-interacting multichannel
electron gas (interaction just renormalizes the Fermi velocity as usual for the 1D Luttinger
liquid approach) with an Anderson-like impurity (their case corresponds toS = 0). The
continuum Hamiltonian can be written as

H = −vF

∫
dxc†σ,f (x)

(
∂

∂x

)
cσ,f (x)+ vFε

∑
M ′,f

|S ′,M ′, f 〉〈S ′,M ′, f |

+v1/2
F

∑
M,M ′,σ,f

(M ′, σ |M ′ + σ)
∫

dxδ(x)[c†σ,f (x)|S ′,M ′, f 〉〈S,M, f | + HC]

(6)

where bra and ket denote impurity states (
∑

M |S,M, f 〉〈S,M, f | +
∑

M ′ |S ′,M ′, f 〉
〈S ′,M ′, f | = 1), andσ and f denote the spin projection and the channel of itinerant
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electron. Two-electron states at each place are excluded, as in the Hund-rule situation.
In the continuum limit (with ‘contact’ impurity–host coupling) only the odd parity about
the impurity waves interact with the impurity, even ones were disregarded. (Note that in
[2] only the spin-compensated case was studied rigorously and for other cases a special
conjecture had to be used.) The impurity rapidityp0 is related to the impurity level energy
ε of the linearized model viavFε = |p0|.

The thermodynamics of the model is analysed in terms of the usual string hypothesis.
In the thermodynamic limit, in whichL,N,M,m(j) → ∞ with their ratios kept fixed,
the Bethe ansatz equations have the following solutions: (i) unbound electrons with charge
rapiditiespj , (ii) spin–charge singlet pairspj = λj ± i/2, (iii) spin strings (bound states of
any number of down-spins), and (iv) channel strings of arbitrary length for each channel.
In fact ourn-channelt − J model has an infinite on-site repulsion to exclude the double
occupation within each channel, so that the structure of bound states is analogous to the
asymmetric limit studied in [2, 12]. For simplicity we only consider the channel-singlet
situation and neglect all channel symmetry breaking fields [13], for instance crystalline
fields. The orbital singlet condition leads to spin-composites for the itinerant electrons in
the ground state, which spin-compensate the impurity.

We first study the ground-state properties of the impurity as a function of the band
filling and the external magnetic field. In complete analogy to the standard multichannel
Kondo problem in the ground state only unbound charges (class (i)), spin–charge singlet
pairs (class (ii)) and channel strings of length 1 and 2 for each channel (class (iv)) can
be occupied. The latter correspond to unbound channel states and pairs of them. The
occupation of these states determines the Dirac seas of the model. For the orbital singlet
condition the rapidities of the channel strings fill the entire band without leaving holes.
Introducing distribution density functions for particles and holes for each class of states,
the channel strings can then be eliminated from the problem via Fourier transformation.
Denoting withρ(p) (ρh(p)) andσ(λ) (σh(λ)) the densities for unbound charges and spin–
charge pairs and their holes, respectively, we find that they satisfy the following integral
equations

a1(p)+ 1

L
a2S+1(p − p0) = ρh(p)+ (1− a1 ? s1) ? (ρ(p)+ a1 ? σ(λ))

a2(λ)+ 1

L
a2S+2(λ− p0) = σh(λ)+ (1+ a2) ? (1− a1 ? s1) ? (σ (λ)+ s ? ρ(p)) (7)

where? denotes convolution, and thep andλ integrations are over the intervals|p| > B

and |λ| > Q, respectively. Here the integration limits±B and±Q play the role of Fermi
points for unbound electrons and singlet spin–charge pairs. The kernelsan, s ands1 are the
Fourier transforms of

exp(−n|ω|/2) [2 cosh(ω/2)]−1 sinh[(n− 1)|ω|/2]/ sinh[n|ω|/2] (8)

respectively. The driving terms proportional toL−1 are due to the impurity, while the
extensive ones describe the interacting electron gas. Equations (7) are linear in densities,
and can be separated into a bulk and an impurity contribution. The host determines the
integration limits, e.g.B = ∞ corresponds to a zero magnetic field (no unbound charges),
while the limitQ→∞ refers to the low singlet-pair density, andQ→ 0 to a band-filling
n (one electron per channel and site).

The solution of the integral equations for the impurity density distributions yields the
valence and the magnetization of the impurity in the ground state. In zero magnetic field
(B →∞) the valence monotonically varies fromnimp = 0 for low pair density (Q is large)
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to nimp = n for Q = 0 (half-filled bands). In general, the impurity valence depends on the
relative values ofQ andp0, but also onS.

More interesting than the valence is the impurity magnetization. To study the
magnetization we Fourier transform equations (7) and eliminateσ(λ) from the first equation
by using the second equation

ρh(p)+ F ? ρ = s ? σh+ s(p)+ 1

L
s ? a2S(p − p0) (9)

whereF is the Fourier transform of̃F(ω) = tanh(|ω|/2)[1−exp(−n|ω|)]−1. In the absence
of an external magnetic field we obtain an impurity magnetization ofSzimp = S and the host
has no magnetization. Since the total number of electrons is conserved, the magnetic field
monotonically increases the number of unbound electrons and simultaneously decreases the
number of singlet pairs. The first term on the right-hand side of equation (9) represents the
number of holes in the singlet-pair band (the integration is now over the interval [−Q,Q]).
Usually the Zeeman splitting is much smaller than the Fermi energy, so that for weak
magnetic fields (the field is not necessarily small compared to the Kondo temperature) we
may neglect the effect of the pair holes on the impurity magnetization, i.e. by settingQ = 0.
Assuming thatB is large the Fredholm integral equation (9) can be reduced to a hierarchical
sequence of Wiener–Hopf integral equations. In the following we discuss the solution of
the leading Wiener–Hopf equation, which is a valid approximation in the limit of smallTK
(large |p0|).

Depending on the value ofS we have to distinguish two different situations [2–4].
(a) If S 6= 0 the impurity is said to be underscreened and asymptotically a free impurity

spin behaviour is obtained

Szimp = µ
[

1± n
2
(Ln)−1− n

2

4
ln |Ln|(Ln)2+ · · ·

]
(10)

whereLn = | ln(H/TK)| andTK ∝ exp(−π |p0|) takes the role of the Kondo temperature.
In (10) the upper (lower) sign corresponds to low (high) fields compared toTK . The
magnetic momentµ is different at low and high fields, namelyµ = S if H � TK and
µ = S + (n/2) for H � TK . This case is similar to the underscreened magnetic impurity
in the free electron host, corresponding to 2S > n.

(b) For S = 0 the small field impurity magnetization is given bySzimp = Hχs , where

χs ∝ T −1
K is finite. Since the zero-field susceptibility is finite, this case is analogous to the

totally compensated Kondo impurity in the free electron gas (2S = n). The most essential
point to emphasize is that the overscreened situation (n > 2S, where for small fields the
excess of channels gives rise to critical non-Fermi-liquid behaviour for free electron gas) is
never reached for our highly correlated multichannel electron model.

Hence, a hybridization multichannel impurity in a correlated electron system undergoes
two processes atT = 0. First, an effective spinS + 1

2nimp is created via hybridization
with the host spin-singlet pairs. Second, a non-zero magnetic field de-pairs electrons in
the host, which screen the effective impurity spin. The latter process is similar to the spin-
compensation in the multichannel Kondo effect for a free electron host [2, 3]. The saturation
magnetization of the impurity at large fields (compared toTK ) is S + (n/2).

The thermodynamic Bethe ansatz equations for the orbital channel singlet can be
obtained by minimizing the free energyF = E − T S, whereT is the temperature and
S is the entropy. This yields integral equations for the thermal dressed energies for the
excitations. The thermodynamic Bethe ansatz equations are driven by the host, and they are
very similar to those of the free electron host multichannel Kondo problem [12], differing
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only in the driving terms (energy of thet − J model instead of the linearized free electron
gas). In the high-temperature limit the driving terms are not relevant, so that the free energy
of the impurity is similar to that of the Anderson impurity in a free electron host [9, 12],
but with two magnetic configurations.

We now study the low-temperature thermodynamics in the Kondo limit, where the
charge degrees of freedom are suppressed. Using an analysis similar to that of [3, 12] we
cast the low-temperature thermodynamics into the universal form

φj (λ) = s ? ln[(1+ eφj−1)(1+ eφj+1)] − δj,n eπλ (11)

whereφj is the thermodynamic dressed energy scaled with the temperature for a spin-string
of length j andφ0 = −∞. The magnetic field is introduced via the asymptotic condition
limj→∞(φj/j) = H/T . For low temperatures the impurity free energy can be expressed as
a function ofφn

Fimp = −T
∫

dλ a2S(λ) ln(1+ eφn)

2 cosh[πλ+ ln(T /TK)]
. (12)

The results are similar to those of a multichannel impurity in a free host for a totally screened
case [3, 12], but differ drastically for underscreened and overscreened cases. Once more, the
overscreened case is absent for our model. In the underscreened case the low-temperature,
zero-field magnetization possesses a Curie-like temperature dependence and there is non-
zero entropy due to excess spin. In the totally screened caseS = 0 the low-temperature
susceptibility and specific heat are similar to the usual Fermi-liquid situation.

The effective Kondo exchangeJeff depends on the impurity rapidityp0 relative to the
Fermi level of the chargesQ. The solution of the equation for the pair densityσ in the
limit of the almost filled band yields thatJeff is determined by the transcendental equation

J−1
eff − (n− 2) ln(Jeff/2π) = Q− p0

i.e. to leading order

TK ∝ J (n−2)/2
eff exp(−π/Jeff).

Thus for large|Q−p0| we have the usual exponential dependence, while for small|Q−p0|
the Kondo temperature reveals a power-law dependence withJeff [2].

Possible applications of the multichannel Kondo problem have been discussed previously
[4]. For example: the underscreened situationS 6= 0 is realized by Tm and Tb impurities
in a simple metallic host; the completely compensated case quantitatively explains the
thermodynamics of Fe and Cr impurities in Cu and Ag. Additionally, in the mixed valent
regime forn = 2 andS = 3

2 the model could represent a dilute manganate alloy [1].
The stability of the critical non-Fermi-liquid fixed point of the overcompensated spin

to perturbations is of great interest [13, 14]. The effects of several symmetry breaking
fields have been investigated. On the one hand, the fixed point was found to be unstable
(Fermi-liquid behaviour is recovered) to (i) an external magnetic field, (ii) channel-symmetry
breaking in the exchange coupling (Jeff depends on the channel) and (iii) a crystalline field
splitting. On the other hand, the fixed point is stable to exchange anisotropy (J‖ 6= J⊥).
As we have shown in this paper, it is also unstable to interactions among the conduction
electrons.
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